

PROOF TO ONE OF LANDAU'S FOUR PROBLEMS.

NICETO VALCÁRCEL YESTE. GRADUATE IN PHYSICAL SCIENCES.

JANUARY 18,2026

1. INTRODUCTION.

This paper tries to demonstrate the infinity of numbers of the form $(n^2 + 1)$, and for this, we will obtain another larger prime number and in the same way $(n + k)^2 + 1$ where $k = \prod p_j$ is the product of every prime numbers $< (n^2 + 1)$.

2. DEMONSTRATION.

Let $(n^2 + 1)$ the last prime number of this way

$$(n + k)^2 + 1 = (n^2 + 1) + k(k + 2n)$$

$$\text{Dividing by any } p_j \in \prod p_j \implies \frac{(n^2+1)+k(k+2n)}{p_j} = \frac{n^2+1}{p_j} + \frac{k(k+2n)}{p_j}$$

$\frac{k(k+2n)}{p_j}$ is a natural number because k contains to any $p_j \in \prod p_j$, but $\frac{n^2+1}{p_j}$ is a rational number.

Therefore $(n + k)^2 + 1$ is a prime number $> (n^2 + 1)$

3. My email:

nicetovalcarcel@gmail.com