

PROOF OF COLLATZ CONJECTURE.

Niceto Valcárcel Yeste. Graduate in C.C, Physical.

January 17,2026

1. Introduction.

The Collatz conjecture states that, given any natural number $n \in N$, we will always reach the number 1 by applying the following function f to n as many times as necessary.

If $f(n)$ is even, divide n by 2, and if $f(n)$ is odd, multiply n by 3 and add 1.

The method used is the method of proof by contradiction.

It is assumed that there exists a FIRST number n that doesn't satisfy the Conjecture and it is proven that it cannot be.

2. Demonstration.

Let $n \in N$ the first natural number that does not satisfy the Conjecture.

The number n can not be an even number because $\frac{n}{2} < n$ satisfy the Conjecture.

Let n an odd number.

Then $n = 4q \pm 1$

$$n = 4q + 1 \Rightarrow 3(4q + 1) + 1 = 12q + 4 \Rightarrow 3q + 1 < n$$

$n = 4q - 1 = 2^2q - 1 \Rightarrow 3(2^2q - 1) + 1 = 12q - 2$ is an even number $\Rightarrow 6q - 1$ an odd number

$3(6q - 1) + 1$ is an even number. $3(6q - 1) + 1 = 18q - 2 \Rightarrow 2m \Rightarrow m = 3^2q - 1$

$$\text{Let } m = 2t - 1 = 9q - 1 \Rightarrow q = \frac{2t}{3^2} = \frac{2(2a+1)}{3^2} \Rightarrow (2a+1) = 3^2(2b+1)$$

$4q - 1 = 4 * 2(2b+1) - 1$ is an odd number $\Rightarrow 3(4 * 2(2b+1) - 1) + 1 = 3 * 4(2b+1) - 1$ is an odd number \Rightarrow

$$\Rightarrow 3((3 * 4(2b+1)) - 1) + 1 = (3^2 * 2(2b+1)) - 1 \text{ is an odd number} \Rightarrow$$

$$3((3^2 * 2(2b+1)) - 1) + 1 \Rightarrow (3^3(2b+1)) - 1 = 2^i c \Rightarrow \text{is an even number}$$

$$c = \frac{(3^3(2b+1)) - 1}{2^i} < n$$

$$\text{Let } m = 2^k(2p - 1) \Rightarrow (2p - 1) < n$$

$$(q, m, a, b, c, i, k, p) \in N$$

Therefore n satisfy the Conjecture.

3. My email.

nicetovalcarcel@gmail.com